3.692 \(\int \frac{1}{\sqrt{d x} (a^2+2 a b x^2+b^2 x^4)} \, dx\)

Optimal. Leaf size=283 \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )} \]

[Out]

Sqrt[d*x]/(2*a*d*(a + b*x^2)) - (3*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/
4)*b^(1/4)*Sqrt[d]) + (3*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/4)*b^(1/4)
*Sqrt[d]) - (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[2]*a^(7/4
)*b^(1/4)*Sqrt[d]) + (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[
2]*a^(7/4)*b^(1/4)*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.264979, antiderivative size = 283, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {28, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]

[Out]

Sqrt[d*x]/(2*a*d*(a + b*x^2)) - (3*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/
4)*b^(1/4)*Sqrt[d]) + (3*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/4)*b^(1/4)
*Sqrt[d]) - (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[2]*a^(7/4
)*b^(1/4)*Sqrt[d]) + (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[
2]*a^(7/4)*b^(1/4)*Sqrt[d])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d x} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx &=b^2 \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )^2} \, dx\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}+\frac{(3 b) \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )} \, dx}{4 a}\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}+\frac{(3 b) \operatorname{Subst}\left (\int \frac{1}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{2 a d}\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}+\frac{(3 b) \operatorname{Subst}\left (\int \frac{\sqrt{a} d-\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{4 a^{3/2} d^2}+\frac{(3 b) \operatorname{Subst}\left (\int \frac{\sqrt{a} d+\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{4 a^{3/2} d^2}\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{8 a^{3/2} \sqrt{b}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{8 a^{3/2} \sqrt{b}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}-\frac{3 \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}\\ &=\frac{\sqrt{d x}}{2 a d \left (a+b x^2\right )}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}-\frac{3 \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}+\frac{3 \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} a^{7/4} \sqrt [4]{b} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.160656, size = 211, normalized size = 0.75 \[ \frac{\sqrt{x} \left (\frac{8 a^{3/4} \sqrt{x}}{a+b x^2}-\frac{3 \sqrt{2} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{\sqrt [4]{b}}+\frac{3 \sqrt{2} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{\sqrt [4]{b}}-\frac{6 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt [4]{b}}+\frac{6 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt [4]{b}}\right )}{16 a^{7/4} \sqrt{d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]

[Out]

(Sqrt[x]*((8*a^(3/4)*Sqrt[x])/(a + b*x^2) - (6*Sqrt[2]*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/b^(1/4)
+ (6*Sqrt[2]*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/b^(1/4) - (3*Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)
*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/b^(1/4) + (3*Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]
)/b^(1/4)))/(16*a^(7/4)*Sqrt[d*x])

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 207, normalized size = 0.7 \begin{align*}{\frac{d}{2\,a \left ( b{d}^{2}{x}^{2}+a{d}^{2} \right ) }\sqrt{dx}}+{\frac{3\,\sqrt{2}}{16\,{a}^{2}d}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\ln \left ({ \left ( dx+\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) \left ( dx-\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) ^{-1}} \right ) }+{\frac{3\,\sqrt{2}}{8\,{a}^{2}d}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\arctan \left ({\sqrt{2}\sqrt{dx}{\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}+1 \right ) }+{\frac{3\,\sqrt{2}}{8\,{a}^{2}d}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\arctan \left ({\sqrt{2}\sqrt{dx}{\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x)

[Out]

1/2*d*(d*x)^(1/2)/a/(b*d^2*x^2+a*d^2)+3/16/d/a^2*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2
^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+3/8/d/a^2*(a*d^2/b)^(1/4)*2
^(1/2)*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+3/8/d/a^2*(a*d^2/b)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a*d^2/b
)^(1/4)*(d*x)^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38892, size = 536, normalized size = 1.89 \begin{align*} \frac{12 \,{\left (a b d x^{2} + a^{2} d\right )} \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{1}{4}} \arctan \left (\sqrt{a^{4} d^{2} \sqrt{-\frac{1}{a^{7} b d^{2}}} + d x} a^{5} b d \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{3}{4}} - \sqrt{d x} a^{5} b d \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{3}{4}}\right ) + 3 \,{\left (a b d x^{2} + a^{2} d\right )} \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{1}{4}} \log \left (a^{2} d \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{1}{4}} + \sqrt{d x}\right ) - 3 \,{\left (a b d x^{2} + a^{2} d\right )} \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{1}{4}} \log \left (-a^{2} d \left (-\frac{1}{a^{7} b d^{2}}\right )^{\frac{1}{4}} + \sqrt{d x}\right ) + 4 \, \sqrt{d x}}{8 \,{\left (a b d x^{2} + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="fricas")

[Out]

1/8*(12*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)*arctan(sqrt(a^4*d^2*sqrt(-1/(a^7*b*d^2)) + d*x)*a^5*b*d*(-1
/(a^7*b*d^2))^(3/4) - sqrt(d*x)*a^5*b*d*(-1/(a^7*b*d^2))^(3/4)) + 3*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)
*log(a^2*d*(-1/(a^7*b*d^2))^(1/4) + sqrt(d*x)) - 3*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)*log(-a^2*d*(-1/(
a^7*b*d^2))^(1/4) + sqrt(d*x)) + 4*sqrt(d*x))/(a*b*d*x^2 + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d x} \left (a + b x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b**2*x**4+2*a*b*x**2+a**2)/(d*x)**(1/2),x)

[Out]

Integral(1/(sqrt(d*x)*(a + b*x**2)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.25347, size = 363, normalized size = 1.28 \begin{align*} \frac{\sqrt{d x} d}{2 \,{\left (b d^{2} x^{2} + a d^{2}\right )} a} + \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{8 \, a^{2} b d} + \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{8 \, a^{2} b d} + \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \log \left (d x + \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{16 \, a^{2} b d} - \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \log \left (d x - \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{16 \, a^{2} b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(d*x)*d/((b*d^2*x^2 + a*d^2)*a) + 3/8*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^
(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b*d) + 3/8*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(
a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b*d) + 3/16*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a
*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^2*b*d) - 3/16*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x - sqrt(2)*(a*d^2/b
)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^2*b*d)